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A formula due to G.D. HaIluzhlnte for calculating the sound transmission 
through a fine grid by means of the added mass of Its elements Is well known 
to the specialist, although it was never published by Its author. A new 
proof of Halluzhlnte~ formula Is given below, 
nal author. 

with the consent of Its origl- 

First a few preliminary remarks will be made. It Is assumed that the 
fluid Is ideal. and compressible. The pressure p Is a function of the den- 
slty P only. The velocities of the fluid particles are so small that their 
squares may be neglected ln comparison with the flrat powers of them. The 
variations ln density and pressure are also small. 

The flow (a plane sound wave) possesses a velocity potential i . If this 
potential can be represented ln the form ,@f(r,y), then it satisfies the 
wave equation (cf., for example, Cl]) 

a’@ a’@ 
a2’+ *a -= -/pal (k=$) 

where o Is the velocity of sound. It IS known that the intensity of sound 
1s measured by the flow of energy carried by the progressive waves through 
a unit of area. We shall consider a plane sound wave with the potential 

~==ccos(of-_kz)+Bsin(ot-_kz) 

which satisfies (1). It Is not difficult to calculate the lntenelty of sound 
for such a flow: '17x/w 

(2) 

The behavior of the velocity potential +(x,v) at large distances from 
the grid may be Investigated with the help of Rayleigh's method [2]. The 
lnveatlgatlon of the flow of fluid In front of the grid and behind It may be 
carried out by almllar procedures. Thus we shall limit our consideration to 
the flow behind the grid. Let us take a plane sound wave having a potential 
oftheform A cos(&--kc0 ) where A and 8 are arbitrary constants. 
We place ln our flow a grld with &s parallel to &e y-a~cls. Let the y-axis 
be very close to the right-hand side of the grla and let the screen have 
period a - i&/p . We shall consider the flow ln the half-plane x > 0 . 
Since Its potentlol Is clearly proportional to the velocity of the Initial 
flow for x - 0 , then we shall assums that for x :y 0 the following rela- 
tion Is valid for the potential 1 

UJ x--o = a0 + a1 cosp~ $- b, sin py + . . . f a, cos npy + b, sin spy. . . 
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where a, and b are linear combinations of co8 cut 
we seek a potent&Q of the form 

and sincut .Forx>O 

From Equation (1) It 
Is a linear combination 
(3) gives the otentlal 
tlon (I), A, and also 

. . + anAn (x) cos npy -j- b,B, (z) sin nm + . . . (3) 

E;IIows that deAs/&= - @A, . Consequently, 
CO8 kx and sin kX . The corresponding termA$n 

of the transmitted wave. 
B.) satisfy Equation 

Further, in view of Equa- 

#A&2x= = (naps - ks) A, 

If the structure of the grid 1s fine, i.e. p r k , then 

where 17, and Cs are constants. It Is physically clear that as x + m the 
amplitude mU8t remain finite, and hence C = 0 . 
field behind the grid consists of a transd 

Therefore the velocity 
tted wave and a flow with a poten- 

tial decaying at least as sxp (_ z I/$J _.._ksj a8 x - - . 
If the structure of the grid 18 sufficiently fine, then we assert that it 

1s not difficult to generalize to the case where the axis of the grid is not 
perpendlcuIar to the direction of the sound wave. 

An analysis similar to that Just given shows that In this more general 
case the flow behind the grid will consist of a transmitted wave and a flow 
whose potential decays exponentially as 
the axle LL of the grid and the x-axis "c 

as long as the angle between 
sZeODFig.I) 1s not small. 
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of the elements of the grid. 
waves ln front of the grid be 

We now proceed to the derivation of the 
formula of Maliushints for sound transmlsslon 
through a fine grid. If we place in the path 
of a sound wave moving along the r-axis a grid 
WhO8e period and thickness are small in compa- 
rison with the wavelength X = 2?& , then part 
of the wave will Pass through the grid, part 
will be reflected, and furthermore, there will 
be a flow which 18 noticeable only in the lmme- 
dlate neighborhood of the grid. 

We fix the origin of coordinates within one 
Let the potential of the incident and reflected 

Let @@) =Acos(oi- kx) be the potential of the transmitted wave. The 
Parameter8 A, B, 0, fi and 

1 
are related 80 that the flow to the left of 

the grid joins continuously w th the flow to the right. After this the coef- 
ficient of sound transmisalon of the grid 18 found qulte readily, On account 
of the smallness of the dimension8 of the grid compared to the wavelength, 
the velocity of the flow Impinging on the grid ?-p equal to 

us [aa, laxI,, ==kAsinot-kBcos(ot+~)+kCcos(ol+~) 

The velocity immediately behind the screen is equal to 

&cause of the continuity of the flow and the lnco .resslblIity of the 
liquid near the grid, it must be assumed that.@= Ugwhenoe B=C and 
fi = Y,, and the Velocity of the flow lmplnglng on the grid equals 

U = kAsinot (4) 

We shall now consider the picture of the flow ln more detail. we choose 
the element of the grid containing the origin of the coordinate system and 
the band of flow from x - - m to x = = which corre8pond8 to this element, 
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There is no need to specify the form of this band more precisely; it will 
suffice to assume that Its upper and lower boundaries are displaced from each 
other by the spacl 
regions (see Fig. 3. 

of the grid. We shall divide this band into three 

Region 1 extends from x = -m to x=0. 
region 1s 

The potential in this 

CD = (D(l) = A cos (at - kx) + B [sin (tot - kx -i- p)’ 1 sin (ot +‘kx f- $)I 

2 Is in the neighborhood of 5 = 0 . its dimensions in 
allRdkEck&i are small In comparison with the wavelkgth (i.e. J&~T is 
small In this region), but E - the length of region 2, although infinitely 
small compared to the wave length, 1s infinitely large In comparison with 
the period of the grid. The flow In region 2 may be treated as the flow of 
an Incompressible fluid ([l), Chapter X, Section 290, 305), impinging on the 
grid with velocity (I . 

The flow in region 2 consists of the flow caused by a grid moving with 
velocity - U (potential cp ) and a uniform flow with potential t/Z 

(1, = qJD'2) = cp -i- ci'z 

Region 3 extends from r = m to .r = 0 . The potential In it Is 

(1, L: @c3) zz A cos (tit - kr) 

We shall noe calculate the difference 60 In potential between the right 
and left boundaries of region 2 by two different methods. Cn the one hand, 
neglecting In each of the terms I@ and ~(3) the small quantities lJ=i of 
higher order, we obtain 

60 = ken sin@& - 28 sin(wt -i-p) (S-J) 

Cn the other hand, the same difference in potential 1s equal to 

m - UE f 6g, 

where bm Is the potential difference between the right 
of region 2. As a consequence of the stated assumptions 
ture of the grid and the dimensions of region 2 we have 

69 2 (P(X+cn) - qx,-co) CT=: 9, - ‘p, 

From (4) to (7) follows the approximate equality 

-2Bsin(ol+$)==-_--cp_, 

(6) 

and left boundaries 
regarding the struc- 

(7) 

(8) 

In using the theorem of change in momentum, we can calculate (pp - _- 
by means of the added mass and area of an element of the grid. 'f Accord ng to 
Sedov [3] 

h,,U + ih12U = - pSfJ + ip 
s 

z dw, w = cp + W, 2 = x $- iy (3 

where S is the area of an element of the grid, A,, Is the added mass ln 
the x-direction, and UI 1s the complex potential of the flow for a moving 
grid. The integral IS carried out along any closed contour which encircles 
the element of the grid once. It may be shown that at infinity to the left 
and right 

0 (10) 

Ther.efore, extending the contour of Integration up to the boundaries of 
region 2, 1.e. from x = - 0~ to x = .ZD as compared with the period and 
thlctiess of the grid, and using the fact that the complex velocities &~/a.? 
are equal at those points on the upper and lower boundaries which differ by 
the period I(sin6 + i ccsfl) we obtain 

8 
zdw = - 2 (sin 6 + i cos 6)(w, -w_) = - I (sin it + i co9 6) (cp, -cp_,) 
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Hence, using (9);we obtain 

k-4 sinot (h,, + pS) 
(Poo-~-oo= pl cos 6 

Substituting (pm- (P_- from (11) Into (a), we find that 
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whence 

- 2Bsin(ot+p) = 
kA sinot (1,, + pS) 

plcos 6 

p = 0, B = _ kA2$nc$6ps) 

Then using Equation (2), we find that the average energy E, carried by 
the Incoming wave, and the energies E2 and EJ of the transmitted and reflec- 
ted waves are, respectively, 

E, = ?A2 [ I+ ‘;b”l;: ;$jf] , E2 = TkAa, E3 = ka @.,I + PS)' 
4p212 co9 6 

Hence we have for the coefficients of sound transmission c and reflec- 
tion r 

1 +[ w @,I + PS) 1 a 1 cos 
-= 
a I 2pC1cosd ’ 

-= 
r i + 

L 2pCl 

h + 

6 1 2 

PS 

Thus the knowledge of the added mass of the grid enables one to 
the coefficients of sound transmission and reflection of the grid, 
to settle the question of how much of the sound is transmitted and 
reflected. 

caiculate 
that is, 
how much 
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